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This document is a description of how to formulate the weighted-least
squares (WLS) state estimation problem. Most of the formulation is based
on the book by Abur and Exposito!.

Power system state estimation is a central component in power system
Energy Management Systems. A state estimator receives field measurement
data from remote terminal units through data transmission systems, such
as a Supervisory Control and Data Acquisition (SCADA) system. Based on
a set of non-linear equations relating the measurements and power system
states (i.e. bus voltage, and phase angle), a state estimator fine-tunes power
system state variables by minimizing the sum of the residual squares. This
is the well-known WLS method.

The mathematical formulation of the WLS state estimation algorithm for
an n-bus power system with m measurements is given below.

LAli Abur, Antonio Gomez Exposito, “Power System State Estimation Theroy and
Implementation”, CRC Press



Basic Equations

The starting equation for the WLS state estimation algorithm is
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The vector z of m measured values is

ZT:[Zl Z9 Zm}

The vector h
' = [hi(z) ho(z) .. hi(2)]

containing the non-linear functions h;(x) relates the predicted value of mea-
surement ¢ to the state vector x containing n variables

.I’T:[Jfl o ... l’n}

and e is the vector of measurement errors

€T:[61 €y ... em}

The measurement errors e; are assumed to satisfy the following statistical
properties. First, the errors have zero mean

E(e)=0,i=1,..,m 2)

Second, the errors are assumed to be independent, (Ele;e;] = 0 for i # j),
such that the covariance matrix is diagonal

m

Cov(e) = E(e-e") = R = diag{o?,03,...,02} (3)

The objective function is then given by the relations

m

J(x) =Y (zi = hi(@))*/ Ra = [z = h(@)]"R™'[z = h()] (4)
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The minimization condition is
dJ () T -1
g(x) = 5 = H ()R [z — h(z)] =0 (5)
where H(z) = Oh(z)/0z. Expanding g(x) into its Taylor series leads to the
expression
9(@) = 9(a") + Ga) (@ —2") + .. = 0 (6)
where the k + 1 iterate is related to the k¥ iterate via
:Bk—i-l — .CEk _ G(:vk)_lg(xk)

and G(z%) is the gain matrix

oz
Note the each iterate g(x*) still satisfies

g(a*) = —H" (")R7}(z — h(2"))

The Normal Equation and solution procedure:

The normal equation for the state estimation calculation follows from equa-
tion (??) and is given by the expression

G(a")Ax* = HT (2")R™ (2 — h(z")) (7)

where AxF*t!t = z#*+1 — 2% The WLS SE algorithm is based on this equation
and consists of the following steps

1. Set k=0

Initialize the state vector x*, typical a flat start

Calculate the measurement function h(z")

Build the measurement Jacobian H (z¥)

Calculate the gain matrix of G(2%) = HT (2*)R~1H (2*)
Calculate the RHS of the normal equation H” (z*)R™(z — h(z"))
Solve the normal equation ?? for Ax*

Check for convergence using max }Aa:k| <e

e T A B

If not converged, update ¢! = z¥ + Az* and go to 3. Otherwise stop



The measurement function h(z*)

The measured quantities and their relation to the state variables are listed

below

1. Real and reactive power injection at bus ¢

Pi = V; Z V}(GU COS Hij + Bij sin 074)
i#]

Qi=V; Z V;(Gyjsinb;; + Byj cos 0;5)
i#j

2. Real and reactive power flow from bus i to bus j:
Py = V(gsi + 9ij) — ViVj(gij cos 055 + iy sin 0y)
Qij = =V (bsi + bij) — ViVj(gi; sin 05 — byj cos 0i;)

3. Line current flow magnitude from bus i to bus j:

Lij =\ P+ @5/ Vi

(10)

(11)

(12)

These functions represent the set of functions h;(z) that relate the state vari-
ables V; and 0; to the measurements. The variables in the above expressions

are defined as

e V; is the voltage magnitude at bus ¢
e 0, is the phase angle at bus ¢

o QZJ:@—GJ

G;; + 7Bi; is the ijth element of the Y-bus matrix

J

gsi + jbsj is the admittance of the shunt branch at bus ¢

gij + jbi; is the admittance of the series branch between bus ¢ and bus



The measurement Jacobian H:

The Jacobian matrix H can be written as
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where the expressions for each block are
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00,
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0P,
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P..
86917 = V;V;(gi;8in6;; — b cos b;;)
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= _‘/j(gij COS gij + bij sin 02]) + 2(9@] + gsz)‘/;

OP; .

61/5 = —Vi(gij cos b;; + bij sin 0;;)
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